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Abstract-The diffusion problems with moving boundary are formulated into a general integral form 
Fundamental Green’s function is used to derive a transcendental equation that gives readily the interface 
advancement, the concentration profile, and the boundary concentration of a growing sphere. 

Examples dealing with the diffusion-controlled spherical growth in finite and infinite regions are 
calculated and compared to the results available in the literature. 

Potential applications of this technique are briefly discussed. 

NOMENCLATURE 

solute concentration; 
initial and interface concentration; 
solute concentration of the particle; 
interface concentration at infinite radius; 
reference concentrations; 
diffusivity; 
surface energy; 
molar volume of the particle; 
gas constant; 
temperature; 
radial coordinate; 
time; 
radius of the particle; 
initial radius of the particle; 
radial outer bounda~; 
dimensionless concentration of the 
particle; 
transform quantity rC(r, t); 
Green’s functions for instantaneous plane 
source; 
Green’s function for instantaneous 
spherical surface source; 
position of instantaneous source; 
time of occurrence of instantaneous 
source; 

k, K, n, N, integers; 

Pkt partition point of the original di~usion 
zone; 

;’ 
corresponding time steps; 
proportional constant for parabolic 
growth; 

s, approximated growing rate; 
RR, corresponding position of the interface. 
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INTRODUCTION 

THE GROWTH ofa spherical second phase from a mother 
phase containing more than one chemical constituent 
is of considerable fundamental and practical interest. 
Problems such as crystallization, melting, sohdification, 
and precipitation hardening of metals are only a few 
practical examples frequently encountered in science 
and engineering. 

Theoretically, these problems belong to the class of 
diffusion or conduction processes known as moving 
boundary problems. Numerous investigations have 
been made in this field as seen in several review 
articles and books [l-4]. In general, closed-form 
solutions exist only for relatively simple cases and 
most of the solution processes involve approximate 
procedure and numerica treatment. 

In applying these methods to diffusion or conduction 
in a multi-component system, difficulties arise owing 
to the fact that the concentration or temperature at 
the phase boundary is depen~ng upon the interface. 
advancement and is thus a function of time [S, 6-j. This 
extra degree of non-linearity would make the use of 
numerical approach inevitable, which, additional to its 
stability and convergence problems, requires consider- 
able amount of computations in most of the problems. 

For these reasons, quasi-stationary approximations 
are frequently used in practical applications to describe 
the diffusion growth [7-91. However, these approxi- 
mations are restricted to the case of a slow growing 
sphere and their range of validity remain to be deter- 
mined. In view of this, it should be of basic interest 
to develop a new technique that can solve this type 
of probfem in a general way. 

It seems that the application of the integral tech- 
nique could circumvent the mathematical difficulties 
to a large extent by introducing appropriate funda- 
mental Green’s function to reformulate the differential 
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system into an integral form. Thus the melting and 
solidification of slab and cylindrical rod in a binary 
liquid metal could readily be calculated by solving a 
transcendental equation derived from the integral 

formula [lo, 111. The superiority of this technique in 
comparison with finite-difference method was further 
demonstrated by its readiness and accuracy in cal- 
culating the solute enrichment during the solidification 

of alloy [12]. 
Another advantage of the integral technique is its 

rather unified approach to the diffusion problems in 

either finite or infinite region. While it is true that 
diffusion in a finite domain can be subjected to various 

successful treatments [13-161, integral technique might 
be indispensable in solving diffusion processes in an 

infinite medium. As far as the formulation is concerned, 
there is virtually no difference in adopting the Green’s 

technique to problems with various domain of interest. 
In this paper, the integral formulation of the spherical 

growth will firstly be derived in a sufficiently general 

way so that a wide range of diffusion processes would 
be included. Decomposition of the integral form will 
then be made to facilitate the numerical calculations 

which are then illustrated by actual computation on 

several examples. To estimate the accuracy, the ana- 
lytical solution of particle growth from zero radius in 
an infinite medium will be used for comparison. 

The influences of initial particle size, surface tension, 
and the diffusion range on the particle growth rate will 

be examined in the subsequent examples. 

INTEGRAL FORMULATION 

To apply Green’s function to the moving boundary 

problems in a general way, a diffusion model sketched 
in Fig. 1 will be appropriate. A particle with solute 

concentration Ci grows under the control of solute 

FIG. 1. Diffusion model. 

diffusing toward the interface. The surrounding is 
imagined to be a region of spherical shell with radius 
R, centered at r = 0. This is the model used by Ham [7] 
for the study of particle precipitation from a super- 
saturated solution. The governing equations for this 
system are the following: 

g=Dr$+fg), R(t)<r<R, (I) 

c=c”, t=O 

c= c,, r = R(t) 

(14 

(lb) 

R(t) = Ro, t = 0 (Id) 
ac 

DF r=R(t) 

r = R(t). (14 

Equation (1) is the diffusion equation with constant 
diffusivity and equations (la)-(ld) are the correspond- 
ing initial and boundary conditions. The material 
balance of the solute at the interface is described in 

equation (le). Various symbols are to be referred to 
the notation compiled at the end of the paper. 

It is to be noted that the quantities Co and C, 
might not assume constant values. In fact, the interface 
concentration is related to the particle size by the 
Gibbs-Thomson equation 

C = CO eW’/RgT)[l/R(tl] 
s s (IfI 

which is a relationship that could be of importance at 
the early stage of the growth. 

Equations (1))(le) can be transformed into dimen- 

sionless forms by defining 

r* = L t* zr ,“:, 
Rm’ m 

R*(t*) = g, 
m 

so that the resulting equations become 

ac* a=c* 2 c7c* 
_=_ 
at* ar** 

fFF. R*(t*) < r* < R: (kid 

c* = cg, t* = 0 

c* = c,*, r* = R*(t*) 

(lh) 

(Ii) 

IT* 
-~ = 0, 
rir* 

y* = R,* 

R* = Rd, t* = 0 (lk) 

ac* = (Q*-C:)$; r* = R*(t*). (11) 
&* r*=R’ 
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For the simplicity of operations, all the stars (*) will 
be dropped from the subsequent development, with 

the understanding that dimensionless quantities are 

being referred to. 

To derive the integral equation for this system, the 
transformation a(~, t) = rC(r, t) is made to convert 

equation (lg)-(11) into the following forms: 

g-$=0, R(t)<r<R, 

u=rC,, t=O 

u = rC,, r = R(t) 

(24 

(W 

R(t) = Ro, t = 0 (W 

~lr=,, = (Q-i)%, r = R(t). (24 

One can introduce a Green’s function Gr = Gl(r, t/t, z) 

satisfying the diffusion equation with an instantaneous 

plane source of unit strength at r = 5 and t = z, namely: 

a2GI aG, 
--dt= -6(r-<)&t--r). 

iv 
(3) 

The Green’s function also satisfies its adjoint equation 
in the source coordinates (<,T), which, after a small 
positive value E is added to the time t to avoid the 

singularity, can be written as 

s2G2 aG2 
-+z = -6(r-&S(t+E-7). 
x2 

(4) 

Here the symbol G2 = Gl(r, t+.z/& T) is used to dis- 
tinguish from G1 appearing in equation (3). Similarly, 
equation (2) can also be written into an expression in 

the source coordinates to become 

$-;=O, R(r)<r<R,. 

Multiplying equation (4) by u and equation (5) by G2, 
subtracting from each other, and then integrating with 

respect to 5 and 7 over the region surrounded by the 
contour designated in Fig. 2, one obtains the double 
integral equation 

ss[ G,$r-.%]d{di-j/Tdgdr=O. (6) 

Making use of Green’s theorem to convert area to line 
integral, equation (6) is simplified to the following: 

$~2$-u$]dr+$uG2d~=0. (7) 

<. R(f)+s 5: Rs-’ 

I I 

ffo 
t 

FIG. 2. Integration contour. 

By taking E -+ 0 as the limit, it ends up with the integral 

equation 

which in terms of variable C(r, t) takes the final form: 

where G is the Green’s function for an instantaneous 
spherical surface source of unit strength, which is re- 
lated to the plane source Green’s function G1 by the 

relation 

G = GJ4nrt. (IO) 

Detailed derivations of equation (8) are given in refer- 
ences [12,17, 191. 

Equation (9) expresses the concentration distribution 
at any arbitrary r and t in terms of the concentration 
and its gradients at the boundaries. Obviously, this is 
the main advantage of this technique since the original 
problem is reduced from one involving a domain of 
interest to one involving only its interfaces. However, 
equation (9) still contains unknown quantities R(f) and 
C(R,, 1) that remain to be determined. Furthermore, 
the singularity of G as r -+ 5 and t -+ T would cause 
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considerable difficulties during the numerical evalu- 
ation of integrals. These problems will be solved by 
the method developed in the next section. 

APPROXIMATE SOLUTION 

The Green’s function selected for equation (9) is as 
follows : 

1 

which has zerogradient at r = 0 and vanishes as r + r;. 

The integration of this function over the half space 

r > 0 gives unit value corresponding to the strength 
of the instantaneous source. 

As mentioned in the previous section. equation (9) 
contains two unknown quantities that are the pre- 

requisite to the computation of the concentration 
profile. 

This would require two integral equations that have 
to be solved simultaneously to produce the interface 
R(t) and the concentration at the outer boundary 

C(R,, t). These equations are to be provided by the 
Green’s boundary formula obtained by letting r ap- 

proach respectively to the two boundaries in equation 

(9). Consequently, we obtain 

It is to be noted that a factor of l/2 appears in the 

above formula as a result of the discontinuity of aG/a< 
across the boundary. Equation (12) and (13) are usually 

considered as the real analogy of Plemelj formula in 
complex plane and its proof will be referred to the 
literature [lS, 191. 

Equation (12) and (13) include the integration up to 
the singular points at the boundaries, which could 
cause enormous error if straightforward numerical 
integration is used. An alternative would be to replace 

these equation by directly applying equation (9) to two 
positions infinitesimally close to but inside the bound- 
aries designated as PI and P2 in Fig. 2. At such a point, 
the concentration can be set to the exact boundary 
concentration without introducing significant error 
and, most important of all, the integration over the 
singularity can be avoided. 

Equation (9) can further be simplified by the sub- 

stitution of conditions (lj) and (11) and by combining 
common terms to yield the following: 

The integral can be written as the summation of 

integrals over certain sub-intervals, which, according 

to the mean value theorem for Reimann-Stieltjes 
integral, are decomposed into quadratures as follows: 

k=K I’, . I 
C(r, 4 = C G(P,) 

I i 
4n4’G dt 

k=l Pi r=O 

with 

PI = Ro 
Pk+l= & 

tl = 0 

t ,v+1= t 

Pk < I’m < hi 1 

tn d tm ,< tn+1. 

While the exact values of pm and t, can not be pre- 
determined, a feasible choice would be the middle of 

the interval. For sufficiently small interval, linear inter- 
polation can be used to evaluate the concentrations at 
P,,, and t,. 

The remaining task will be the evaluation of those 
integrals over sub-intervals. It is noticed that, if the 
intervals are sufficiently small, the integration over the 
free boundary could be approximated by a series of 
linear chords with slope s, as shown in Fig. 3. This 
enables us to integrate equation (15) analytically to 
obtain a transcendental equation containing R(t,) and 
C(R,, t,) as unknown variables. This procedure is 
decisive in an effort to cut down the computational 
work while retaining enough accuracy at the same time. 
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The results of this integration are given here for the 
convenience of future application: 

_ 

+i b[e- J [Ir+CI’i4tl _ e- [ld’/4rl] + const, (15a) 

. [e- [CR, - #/Y'] _ e- [IRs t ~)‘!Y*] + const. 

_ E(Z4)e-‘4B’H’ 

(e-‘: -e-‘:) + const. 
1 

s I ~TC~~$ dr 
R(r) 

H 1 
= s 

I 
2 E(z,) + E(z,) e-(4A’H) 

(;-;+;)-;E(z,)-E(z,) 

. (em”: - eCZ:) 1 + const. 

where 

&2$ 
n 

H = 4/S, 

A = -S&-t,)-R,,+r 

B= -&(t-t,)-RR,-r 

y = J[4W)l 
ZI = y/H + AJy 

~2 = YIH-NY 

=3 = YP + WY 

24 = YIH - WY 

E(x) = erf(x). 

W) 

(15c) 

(15d) 

+ ---------------- 
t”+l ------------- 

f 

: lf.-l ------- 
Slope S” I 

+ 

FIG. 3. Interface advancement 

Equations (15a)-(15d) contain only simple functions 

that can be readily calculated with the aid of a digital 
computer. Thus starting from the initial point at t = tl, 
one solves for R(t) and C(R,, t) at t = t2 by requiring 
that equation (15) be satisfied at point P1 and P2. This 

may then proceed to subsequent points in a similar 
manner. 

In the following section, equation (15) will be used 

to solve several diffusion problems, including one that 
has an analytical solution for comparison. Since 
equation (15) is derived in a general way, application 

to heat conduction problems follows automatically and 
thus will not be elaborated here. 

EXAMPLES 

Consider the growth of a particle from zero radius 

in an infinite medium with initially uniform concen- 
tration Co. If the surface concentration C, is assumed 
to be constant throughout the process, this system 

then possesses an analytical solution [20] describing 
a parabolic law of growth as shown by straight lines 
in Fig. 4. 

If we take C” = Co and Csm = C, as the reference 

concentrations in equations (lg)-(11), and let the outer 
boundary R, approach to infinity at the same time, the 
resulting integral equation is immediately deduced 
from equation (14) as follows: 

C(r, t) = 1-Q 
‘dR 
Y.4n52G dT. (16) 

Jo “s 1 R(r) 
The unit value for the first term of the r.h.s. of 
equation (16) is the result of the selection of the special 
type of Green’s function in equation (11). The corre- 
sponding transcendental equation in equation (15) is 
then used to calculate the particle growth. The results 
are plotted as discrete points in Fig. 4, which shows 
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FIG. 4. Parabolic growth of a particle from R(0) = 0. 

good agreements over a wide range of the growing rate 
with the analytical solution. 

It is also of interest to know that equation (16) 

can be integrated analytically if the similarity relation 

R(t) = 2i,,l’t is assumed. The result of integration is 
just the Frank’s solution [20] in dimensionless form: 

C(r. t) = I +4Qi3 eL2 

x [$erfc(*)-$e~(r2~4”]. (17) 

Regarding the computation, the required time steps 
are quickly established by reducing the intervals until 
little improvement of the results is observed. The com- 

putation was performed on a small PDP-10 machine 
that requires user’s supply of error function as a 
program subroutine, which demands a substantial 
amount of computer time. As a comparison, about 
4 min is needed for the calculation up to t = 2 at Q = 4 
when the approximate formula of the error function 
given in reference [21] is used. The maximum error 
of the computation is found to be about 0% per cent 
for Q = 500 at t = 3. For still higher value of Q, the 
double precision would be required in the computation 
in order to retain adequate accuracy. 

A slight modification of the problem is that, instead 
of zero size, an initial particle radius of R. > 0 is 
assumed while all other conditions remain unchanged. 
By choosing the reference concentrations and the length 
to be C,: = C,, C” = Co, and R,, = R,, in equations 

(lg)-( ll), the corresponding integral equation is readily 
obtained from equation (14) as follows: 

which differs from equation (16) by merely the initial 
term. The computational procedure is essentially the 
same as in the previous example and the results are 
plotted as light solid lines in Fig. 5. 

0 I 3 

Jt 

FIG. 5. Growth from R(0) = 1 

As physically expected, the growth at large time 

should approach asymptotically to the exact solution 
(17) that are superimposed as broken lines on the same 
diagram. On the other hand, the growth rate at t = 0 

should match that of the planar growth given by 

dR 21 

dJt ~=II = Q 

where I is the solution of 

1 
ie”*erfc(l) = %. (20) 

It can be proved from equation (18) that equation (19) 
and (20) are exactly the initial growth rate of the sphere. 
Since this would require rather lengthy derivations, 
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including the use of a different type of Green’s function, 
the details will not be given here. 

Figure 5 also shows the range of the validity of the 
quasi-steady state approximations extensively used in 
the literature [8,9] as designated by dotted lines for 
two extreme cases. Conceivably, the approximation 
agrees reasonably well with current calculations in the 
region of higher Q value. In the opposite, attempt to 
use the simplified solution at lower Q may raise the 
error to an intolerable extent and one must therefore 
be very cautious in such a practice. 

The effect of the surface tension on the individual 
growth of the particle can be illustrated by incor- 
porating equation (lf) into equation (1.5) for the cal- 

i I I I I I I 
0 I 2 3 

FIG. 6. Growth under surface tension. 

cutations. The results are plotted in Fig. 6 for the 
particular situation of the growth under surface tension 
in an infinite medium. The curve corresponding to 
zero surface tension (W = 0) is given for ~ompa~son. 
These curves show that the growth is considerably 
suppressed at the earlier stage. It must be pointed out 
that the particle-particle interaction is not taken into 
account here so that the completely opposite phenom- 
ena ofenhanced growth ofcertain particle under surface 
tension due to the Ostwald-Ripening [8,9] has to be 
excluded. 

Final example involves the diffusion within limited 
space as shown previously in Fig. 1. This is an idealized 
model used to describe the precipitation from a super- 
saturated solution under the condition that particles of 
a uniform size and of zero surface tension are evenly 
distributed throughout the medium [7]. Following the 
computational procedures outlined in the previous 

R(f) 

I I I I I I 
cl I 2 3 4 5 6 

fi 

Fro. 7. Diffusion in finite domain. 

section, the computed results are plotted as solid lines 
in Fig. 7 for an arbitrarily selected diffusion domain 
of Rx/R0 = 10. It is noted that the growth in the 
early stage resembles that in Fig. 5 since the conditions 
on the outer boundary has relatively little influence on 
the diffusion in the vicinity of the interface. This effect 
becomes pronounced only after a certain period of 
time when the solute is gradually depleted, which is 
observed by the reducing growth rate of the particle. 
The diagram shows clearly the range of the validity of 
the approximate solution developed by Ham [7]. 

CONCLUSIONS 

The unified approach of the integral technique to the 
moving boundary problem in spherical coordinates 
has been demonstrated by solving a variety of diffusion 
problems. The general equations (14) and (15) were 
derived for immediate applications to a wide range of 
diffusion and conduction problems. 

The essential features of this technique are the 
decomposition procedure and the subsequent approxi- 
mation of the interface advancement by a set of linear 
relationships. These approximations, together with the 
special way of avoiding the singularity, are jointly 
responsible for the success of this technique. 

An outstanding characteristic of this approach is 
that it is rather immaterial to the complexity of the 
boundary and initia1 conditions, which enables us to 
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treat a problem with highly non-linear boundary con- 
ditions as usual. 

The valid range of various approximate solutions 

are reexamined by testing with the computer results. 
It is found that those approximations are strictly valid 

for lower growth rate only. In case of fast growing, 
they underpredict the growth rate substantially and 

thus should be used with caution. 
From experience, the potential applications of this 

technique are likely to be in those fields where rather 
complicated situations are involved. Problems such as 
the coring and surrounding of alloys, microsegregation 
of elements in metals, phase transformation with more 
than one moving boundaries, and the diffusion with 
surface reactions are only a few examples to be 

mentioned. 
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SUR LA TECHNIQUE INTEGRALE POUR LES PROBLEMES 
DE CROISSANCE SPHERIQUE 

Resume-Les problemes de diffusion avec des frontieres mobiles sont formulees sous une forme inttgrale 
g&n&ale. On utilise la fonction fondamentale de Green pour traiter une equation transcendante qui donne 
rapidement l’avancement de l’interface, le profil de concentration et la concentration a la front&e de la 
sphere en croissance. 

Des exemples de croissance spherique control&e par la diffusion, dans des domaines finis ou infinis, sont 
calcults et compares aux rtsultats disponibles dans la documentation. 

On discute briitvement des applications potentielles de cette technique. 

UBER DIE ANWENDUNG DER INTEGRALTECHNIK AUF 
SPHARISCHE WACHSTUMSPROBLEME 

Zusammenfassung-Das Diffusionsproblem mit einer beweglichen Grenztllche wird in allgemeiner 
Integralform formuliert. Ausgehend von der Greenschen Funktion wird eine transzendente Gleichung 
abgeleitet. aus der sich die Grenzffachenbewegung, das Konzentrationsprofil und die Grenzflachen- 

konzentration fiir den Fall einer wachsenden Kugel ergibt. 
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Es werden Beispiele fur das diffusions-kontrollierte sphlrische Wachstum im begrenzten und 
unbegrenzten Raum berechnet und mit vorhandenen Literaturangaben verghchen. Anwendungsmoglich- 

keiten des Verfahrens werden kurz diskutiert. 

06 MHTErPAJlbHOM METOAE PElIIEHM5l 3AflAr 06PA30BAHMJI 
CQEPM’4ECKMX cIACI1411 

hHoTaun%i - 3aflaWi ~ki445’3kiki C rIORBW~HblMI1 rpaHHUaML4 llpt4BOnRTCfl B o6qeii ‘,HT‘Z!rpa,,bHOfi 

fjIOpMy.WipOBKe. @yHaaMeHTanbHan &HKUHII rp&iHa WIOflb3yCTCA nJVI BbIBORa TpaHCUeHnCHTHOrO 

)‘paBHCHrtSi, KOTOpOe OIlHCblBaeT rIepCMeU@HHe ABWK)‘u(CitCSI rpaHHUbl, llpO&iJlb KOHUeHTpaUW, Ii 

kotiuetirpaumo Ha rpamiue pacryuteti cthepw9ecroti qac-ruubi. Pe3ynbrarbr pacrera BnURHWIl ne@@y- 

3HH Ha pCryJlkip)‘CMblfi pOCT C+epWiCCKkiX ‘taCTkill B OrpaHWeHHblX H 6CCKOHe’IHblX o6nacrflx CpaBHH- 

Ba,OTCfl C HMelO~HMHCR ,JaHHblM,,. 

KpaTKo paCCMaTpHBaeTCn BOJMOxHOC npI4MCHeHHe AaHHOrO MeTOna. 
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